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Abstract—The fundamental non-linear coupled equations of large amplitude free vibration of heated circular
plates are derived from the energy equations. The simplified quasilinear, decoupled differential equations for the
same case are also obtained by Berger’s analysis, that is, by neglecting the second strain invariant of the middle
surface from the energy expression.

Both sets of exact and approximate equations are solved separately by a method of successive approximation
and also by use of elliptic integrals.

Numerical results are given in graphical form, for both simply supported and clamped circular plates.

NOTATION

d,r,  thickness and radius of the plate, respectively
t time
u,v,w displacement components in the median surface in r, 6 and z directions, respectively
D flexural rigidity
2(©,1) displacement at the centre of the plate
zy,2, absolute values of the maximum and minimum nondimensional amplitudes, respectively
E, G moduli of elasticity and rigidity, respectively
E total energy of the vibrating system
K(K,} complete elliptical integral of the first kind
T, T* linear and non-linear periods, respectively
o, p coefficient of linear thermal expansion and density of the plate material
1,¢é, 4 non-dimensional time
(¢ temperature change from the initial state
©.® mean temperature and temperature moment
v Poisson’s ratio
Stress function
w, w* linear and non-linear circular frequencies, respectively
&1, 52, middle surface stresses along r and @ directions respectively
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Subscripts s and ¢ refer to the simply supported plate and the clamped plate, respectively. Superscripts ¢ and
a specify the quantity for the cases of the exact method and the approximate method, respectively.

1. INTRODUCTION

PROBLEMS of non-linear vibration of various structural components subjected to aero-
dynamic heating have become very important from the viewpoint of checking the aero-
elastic performance of high speed flying vehicles like missiles and artificial satellites. There
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are not many works in the literature dealing with the effect of thermal loading on vibration
frequencies. Massa [15] has studied the large amplitude, free vibrations of a free circular
plate having temperature variation along the radius. The dynamic behaviour of heated
rectangular plates with large amplitude was discussed by Sunakawa [2] and Pal [11] for
different edge conditions.

Recently the Berger’s approximate analysis [3] has been used by many authors, like
Nash and Modeer [5], Wah {6] and Gajendar [9] to study nonlinear vibrations of circular
and rectangular plates without temperature. In the present work, we study the problem of
large amplitude free vibration of heated circular plates, using both the exact analysis and
the Berger’s approximate analysis. The fundamental equations of motion are deduced
both from the energy considerations and by using Berger’s analysis [3] which makes the
assumption that the effect of second strain invariant in the expression for total energy can be
neglected. The equations of motion as obtained from the energy principle are non-linear,
coupled differential equations, and those obtained by Berger’s analysis are uncoupled,
quasi linear differential equations. Both the sets of exact and approximate equations of
motion are reduced to a Duffing type equation in the generalized form, whose solution is
obtained either by the use of the successive approximation method or by the use of elliptic
integrals 2, 8].

Numerical results are presented for both simply supported and clamped plates in
graphical form. It is shown that the effects of the temperature change and large amplitude
on the period of free vibrations are quite large and can not be ignored, even when the
temperature change is small. Further, it is established that Berger’s approach yields results
sufficient for all practical purposes in engineering.

2. FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

Let us consider a flat circular plate heated at the upper face. Let us assume that the effects
of the internal friction, aerodynamic force and rotary inertia may be neglected.

Let V and T be the potential and kinetic energy of the plate due to bending, stretching
and vibration of the plate under the aerodynamic heating; then, due to symmetry of the
plate [1], we have,

V—-T= fzf[{ ef— 4(I—V)

1 ow *w Eo ~
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Case 1. Exact equations of motion
Using Hamilton’s principle, for extremum of the integral of equation (2.1), we get a set of
exact, coupled equations of motion as

1 dla[ _.‘9(
W(anc {aC

18 ow a 18] 80\ pd2[ro\2o*w
=Z'é}f( ) 1—vcac< —) F(d) ot @4
8 1{d\*|ow)\* 0O
sl = -zl (7] % )
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and y is the stress function.

The boundary conditions obtained by using the extremum condition of equation (2.1)
are as given in equation (2.7):
For the simply supported plate, we have

w =290
62w’ v 6w Eda 28 = 0 at{=1 @.72)
az € a D(l —v°
For the clamped plate, we have
w =0
o _ at{=1 (2.7b)
o

Case 2. Berger's approximate equations of motion

By neglecting the second strain invariant ¢, from equation (2.1) and using Hamilton’s
principle, for extremum of the expression (2.1), we obtain the following set of approximate
equations of motion:

1 d\ ., k¥ _, 5 _pr3 w
21— )( ) VWSV S —F @8
1 ® k?
A @9

where k? is constant throughout the plate.
The boundary conditions for this case are the same as given in equation (2.7).
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The problem is now to obtain the solution of equation of motion (2.4) or (2.8) subject to
the boundary conditions (2.7). Assuming the temperature to be symmetrical, the mean and
the moment of temperature distributions ®, ® are given by

@
1
s

O,(i =0,2,4,...even) (2.10)
2
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B, = 0,2,4,...even). (2.11)
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In the present paper, the vibrations of plates has been analyzed after the change of
temperature, and so the temperature change during the vibration has not been considered.
For the vibration induced by the thermal shock, the deflection can not be assumed as
given in equation (2.13) and therefore, equation (2.4) or (2.8) has to be solved directly. Since
it seems to be natural to expect that there exists no remarkable difference between the wave
form of the present non-linear vibration and that of the small vibration [16], the lowest mode
of vibration is assumed to be the same as the deflection form due to the temperature change
only ; so, the normal displacement of the plate at any time, w'({,®, t), is assumed as the sum
of the displacement due to the temperature change F(®, {} and the amplitude of vibration
after the change in temperature F,({, t)e = const. » @8 in the following equation :

W’(C’ @, t) = F1(®9 Z)+F2(C’ t)9=const. (212‘1)
Assuming F; and F, in the following form
Fi(©, ) = zo(@)w,({)
and
FZ(C, t)6=cons!. = Z(t)(-)=const.Wi((:)’

the expression for the normal displacement w’ given by equation (2.12a) becomes

w(( ©,1) = 20, hwl) (2.12b)
where
20, 1) = zo(@)+[2(1)]l6 = const.» (2.13)
and
wil) = 1+ 4,07 + 4aL%, 2.14)

in which the constants A, and 4, take the following values, and the subscript i stands for s
or c¢: for simply supported edge:

2064y L4y

= 2.15
54v 4T 54y @15

A2=

for clamped edge:
A2 = —2, A4 = 1 (2]6)
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Solving successively the equations of motion (2.4) and (2.5) or (2.8) and (2.9) with the help of
equations (2.10)-(2.16) as in [1, 12] we obtain

2-

dr 2+(f1 +3f320)2+3f32(}2 +f32 = (2.17)
and
fizo+f323=¢ (2.18)
where
1 {lr,)? 1
Le . ‘o — —
fie a4{(d) as 12(1—-v2)} (2.19a)
fle=2 (2.19b)

fle = 16384 i~(1+v)a ro | 5. o)
Le ™ 12 dl 171217°

v (i+5)0;
F149 Y - }+ 319 2 iy (l+4)z(,+6)21} (2.19¢)

i=21

14 = 22497373 @2199)
f%:?:%[1_{Tli(%)2“i,§,zi?iz} 5 W] (2.19¢)
i - 05 10 .
fie= 3_”_6283_2‘% {1~-§—a(1+v)(%)2 iiz%} (2.19g)
fii= 29;3_8_9 (2.19h)

g = —-(%9) %i— (2.20a)

g = —-8192(1+v)a(r) i i (2.20b)

. 221184 ro|2 2
8 3 a(1+v)(3) .:2;2 0+2)2 (2.20d)

]
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It is to be noted that to evaluate the constant k? in equation (2.9), we integrate the equation
(2.9) throughout the plate under the condition that there are no in-plane displacements
along the edge of the circular plate.

Equations (2.17) and (2.18) represent the equation of dynamic equilibrium and the
equation of static equilibrium respectively. The equation of static equilibrium (2.18) was
studied in detail by Sunakawa [1] and Pal [12].

The solution of the equation of dynamic equilibrium (2.17) will be given in the present

paper.

3. ANALYTICAL SOLUTION

Using the transformation,
= J(f1+3 555y (3.1)

and thus, changing the independent variable 7 in the equation (2.17) to a new variable £,
we have the following equation:

&z _ 3
d—€5+2+f22 +f3Z =0 (32)
where
f2 — 3f’320
i +3f423
fi ff320 . (33)
fi= >

f1+3f320



Large amplitude free vibration of circular plates subjected to aerodynamic heating 307

For the pre-buckling state, that is when z, = 0, the term consisting of 72 in equation (3.2)
vanishes because f, = 0, and the equation (3.2) becomes simple Duffing type equation
which can easily be solved by using elliptic integrals. For the post-buckling state, that is
for z, # 0, equation (3.2) becomes the Duffing type equation in the generalized form and
can be solved by using elliptic integrals, but these solutions are too complicated and not
suitable for technical applications.

Therefore, for the post-buckling state, a method of successive approximation [2, 8]
is used for solving the equation (3.2).

Changing the non-dimensional time £ to u by the transformation, p = \/(1+B)¢,
equation (3.2) becomes

(1 +ﬂ) +z = — f,72— f37%. 34

Let z; and — z, be the maximum and minimum value respectively of the displacement z;
then the parameter § and the amplitude 7 are expanded into the power series of z, as

B= —Bizs+Prz3—Baz3 +Pazs— ... (3.5)
Z =~z +n(025 -z + ..., (3.6)

where B, and ,,i = 1,2,3,... are to be determined.
Substituting equations (3.5) and (3.6) in equation (3.4) and equating the coefficients
of z, and its higher powers, each to zero, we obtain a set of differential equations in

N1>M2.M3, .- - , with coefficients consisting of B, B, 83, ... . Solving these equations by
the successive approximation method [2, 8], with the initial conditions
10 =1 700 =mn0=...=0,
and
110) = 17,00) = 7300 = ... = 0,

we can get the values of §,, 8., 83,... and #ny,%,,73,. .. after eliminating the possibility
of resonance. Thus, finally the solution of equation (3.4) is obtained as

I=[—3hn+ifin-Bf-8LAE+E I -R1f)5-.. ]
+[ =z +4 o275 — (8 f§~3lzf3)z§+ B33 - 812125~ GoHe 3 — 3383 13 1
+i83afNz3 + .. Jeos p+ 525 - 533+ Bf3 - szfs)zz Frf3—3/3f)23+ .. Jeos2p
+[- (I{Ffz+37f3)22+(3!§f2+ﬁf§f3)22“(33%f2 $fi—13e/z3+ .. ]Jcos 3u
+[G32S3 +96/2 13025 — Ghaf 5 +42f3f3)z3 + .. Jcos dp
+{—(xo¥56f 3 +330af 3 fa+ wWraf D3 +.. Jcos Spu+.. (3.7)
+ ...

The circular frequency w*(z) and the period of motion T*(t) are given as

N (f1+3f523
oty = UL s ZO)\/ ( )‘/(”B )
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and
27(2r,)? d
\/Tf%z_ (%) (L+(5f3—3/3)z3

—(e 3=+ @R -3 fifi+5% D — . ).

Equation (3.7) and (3.8) give, respectively, the circular frequency and the period of the
large amplitude free vibration of circular plates subjected to aero-dynamic heating. To get
the relation between the maximum and minimum values of amplitude z; and —z, we
integrate the equation (3.2) once and use the condition that

T*(1) =
(3.8)

dz _
— =0 atz =z, —2,,
which gives, d¢
2i(1+3 oz +3f32) = 251 -3 frz,+ 1 f323) = 2E, (3.9

where E is the total energy of the vibrating system. Equation (3.9) gives the relation between
the maximum and minimum values of amplitude z, and —z,.
For the pre-buckling state, equation (3.2) is reduced to

2_

SatNEEfE =0 (3.10)

Through the energy integral [2], equation (3.10) gives

——\/(f1+f322f \/1“ COS ¢
f3z3

201+ f523)

The sign of the above integral is taken to be positive or negative according as Z increases

or decreases with the increase of .
Then the period of vibration is

i 42ro)? pd
™0 = JUi+f3 22)\/( ) G4

where K(K,) is the complete elliptic integral of the first kind.

where

z .
K3} = — = sin ¢.
Z2

4. NUMERICAL EXAMPLES

Let us assume that the circular plates, simply supported or clamped along the edge,
are subjected to the following change in temperature

0=0-= [®0+®1(1—CZ)]}
® =0 thatisg=0 .

@.1

Taking v = 1, equations (2.19)-(2.22) with the help of equations (2.10), (2.11), (2.18), (3.3)
and (4.1) are reduced to

6144 1(2r\% . (931 @,
Le _ "1 12% @ 17— 4.2a
S 157[1 1s(d)“ ‘{96 @}] (4.22)
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27 47111 3566 3198 895 73
te _ 4.2b
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"e: o e s - 4‘2
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fis =37 {1 36( d} 61(”2@,)} (4.2¢)
697 x 512
f%:”=w~37%~ (4.2f)
36864 5 21"0 @0
l.a __ — .
fle =" {1 36(d) @1(1+2®1)} 4.2g)
20480
fit= ~53 (4.2h)
e 3032 2"0 @
g = 1413( ) @l(u—ls@:) (4.3a)
512(2
&= 27( ;") 2@, (4.3b)
a 8192 2"0 2 @0
& = —3“77-7*(?) a®1(1+1 591 4.3¢)
512(2r
g?-»-—( d") 0. (4.3d)

The critical temperature (©,)cr. and the deflection at the centre of the plate after buck-
ling are obtained, with ®,/@, as a parameter, for both exact and approximate cases from
equation (2.18) and compared as shown in Fig. 2 for different edge conditions, namely,
simply supported and clamped plates.

The behaviour of the plate for pre-buckling and post-buckling state is discussed below :

Case 1
B < (0,)cr. (zo =0)

The variation of the ratio of the non-linear and linear periods, T*/T with the amplitude for
different temperatures is studied from equation (3.8) and the comparison between the
exact and the approximate analyses is shown in Fig. 3, for different boundary conditions.
The change of circular frequency with the amplitude is also compared and shown in
Figs. 4 and 5 using the temperature as a parameter. It is seen that the circular frequency
decreases with the increase of temperature for the pre-buckling state.
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®_°c/,e‘

FiG. 2. Relation between temperature rise and deflection at the centre of the plate.

Case 2
0, > (@,)r. (zo # 0)

For the post-buckling state, the change of circular frequency with the amplitude, taking
the temperature as a parameter, is obtained with the help of equations (3.8), (2.18) and (4.1),
for both the exact and approximate analyses and shown in Figs. 4 and 5 for different edge
conditions.

The results show that the circular frequency increases with the increase of temperature
for the post-buckling state and decreases with the increase of temperature for the pre-
buckling state.
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method

_______ Simply Aupported edqe}h s
—o—e—— Clamped edge

Simply mupported edgelExact
mel PP }m:ihod

_______ clamped edge

2
0.2t (220/d) % @=0 0.2 (2%/4) L@ 0-2
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FiG. 3. Influence of large amplitude on period of vibration.
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FiG. 4. Variation of frequencies of vibration of plate with temperature rise and large amplitude,
simply supported edge, ©,/©, = 1-0.
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L 1
12 -0 j -08 -06 04 -02 02 0-6 0-8 10 12

F1G. 5. Variation of frequencies of vibration of plate with temperature rise and large amplitude,
clamped edge, ©,/0, = 1-0.
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Figures 4 and 5 show that the circular frequency increases with the increase of amplitude
for the pre-buckling state and reaches a minimum at the buckling temperature, but decreases
with the increase of amplitude for the post-buckling state until a snap through phenomenon
takes place, and it is seen that the effect of temperature on the vibration can not be ignored.

During the post buckling state, the plate attains a certain maximum absolute value of
amplitude, for a certain temperature. At this maximum absolute value of amplitude, the
plate suddenly starts deflecting in the opposite side, that is, the snap through phenomenon
takes place. This maximum absolute value of the amplitude corresponds to the point
where ®, > (®,cr,, that is where a certain particular temperature after buckling, intersects
the abscissa. After the occurrence of such a phenomenon, the plate may start to vibrate
about the new position of equilibrium,

It is seen that the results obtained from Berger’s approximate analysis agree closely
with those obtained from the exact analysis, which indicates the validity of Berger’s
analysis for all practical purposes.

5. CONCLUSION

The non-linear natural vibration of heated circular plates, simply supported or clamped,
has been studied by the use of an exact method as well as an approximate method. For the
exact method, the fundamental equations of motion are derived from the energy equation,
and since these equations are non-linear and coupled, the solutions are difficult to obtain.
But in the case of the approximate method, simplified quasilinear, decoupled equations
of motion for non-linear vibrations of plates subjected to heating are obtained by Berger’s
analysis, and they can be easily solved by a successive approximation method, or by the
use of elliptic integrals as indicated in the present paper.

The results obtained by Berger’s approximate analysis show that they are in good
agreement with those obtained by an exact analysis, which confirms the validity of Berger’s
analysis for the thermal stress.

An analysis, such as presented here, will be of considerable importance in supersonic
airplanes, missiles and satellites, whenever the vibration has no small effect on the aero-
and thermo-elastic problems. It appears also a reasonable conclusion that the Berger's
approach presented in this paper is likely to yield results entirely adequate for many
technical purposes.
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Aberpakt-—OnpeaensioTcs, U3 ypaBHeHHH IHEPIUHM, OCHOBHbIE, HENHHEHMHBIC, COUPSKEHHBIE YPABCHHA
cpobonubix xoneGanuil GoNbILOH aMIUIMTYABI OJi HACPETBHIX, KPY[JIbIX TIAPPIrHHOK. YMPOIUCHHBIE,
KBasu-fiiHelHble, pacnpsxkenubie AuddepeHIManbhble YPAaBHEHuSt ANIA TOrO-XKE Ciyyas IONydYaroTcs
TaKKE MeTONOM aHanu3sa beprepa, 1o ecTh, npeHeOperas BTOpbIM UHBAPHAHTOM AeopMaLMK CepeaMHHOM
TIOBEPXHOCTH B BBIDAXKEHHH SHEPIHH.

PeluaroTcs, OTAEIBLHO, 008 CHCTEMbI TOYHBIX M NPHOIMKEHHBIX YPABHEHUH NyTeM NPHMEHEHUS METOIA
NOCNE0OBATENbHBIX MPHOIMKEHMIA, @ TAKKE UCTIONbL3YS WUIMITHIECKNE HHTErPANIBI.

JiaroTcs 4UCIICHHBIC PE3YALTATHL B $OpME TPaduKOB, Tak A CBOOOAHO ONEPTHIX KaK M 3RLUEMACHHbIX
KPYIJIBIX IUIACTHHOK.



