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LARGE AMPLITUDE FREE VIBRATION OF CIRCULAR
PLATES SUBJECTED TO AERODYNAMIC HEATING
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Abstract-The fundamental non-linear coupled equations of large amplitude free vibration of heated circular
plates are derived from the energy equations. The simplified quasilinear, decoupled differential equations for the
same case are also obtained by Berger's analysis, that is, by neglecting the second strain invariant of the middle
surface from the energy expression.

Both sets of exact and approximate equations are solved separately by a method of successive approximation
and also by use ofelliptic integrals.

Numerical results are given in graphical form, for both simply supported and clamped circular plates.
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thickness and radius of the plate, respectively
time
displacement components in the median surface in r, () and z directions, respectively
flexural rigidity
displacement at the centre of the plate
absolute values of the maximum and minimum nondimensional amplitudes, respectively
moduli of elasticity and rigidity, respectively
total energy of the vibrating system
complete elliptical integral of the first kind
linear and non-linear periods, respectively
coefficient of linear thermal expansion and density of the plate material
non-dimensional time
temperature change from the initial state
mean temperature and temperature moment
Poisson's ratio

X Stress function
w, w* linear and non-linear circular frequencies, respectively
IT 11 , IT 22 middle surface stresses along rand () directions respectively
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Subscripts sand c refer to the simply supported plate and the clamped plate, respectively. Superscripts e and
a specify the quantity for the cases of the exact method and the approximate method, respectively.

1. INTRODUCTION

PROBLEMS of non-linear vibration of various structural components subjected to aero­
dynamic heating have become very important from the viewpoint of checking the aero­
elastic performance of high speed flying vehicles like missiles and artificial satellites. There
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are not many works in the literature dealing with the effect of thermal loading on vibration
frequencies. Massa [15] has studied the large amplitude, free vibrations of a free circular
plate having temperature variation along the radius. The dynamic behaviour of heated
rectangular plates with large amplitude was discussed by Sunakawa [2] and Pal [11J for
different edge conditions.

Recently the Berger's approximate analysis [3] has been used by many authors, like
Nash and Modeer [5], Wah [6] and Gajendar [9] to study nonlinear vibrations of circular
and rectangular plates without temperature. In the present work, we study the problem of
large amplitude free vibration of heated circular plates, using both the exact analysis and
the Berger's approximate analysis. The fundamental equations of motion are deduced
both from the energy considerations and by using Berger's analysis [3] which makes the
assumption that the effect of second strain invariant in the expression for total energy can be
neglected. The equations of motion as obtained from the energy principle are non-linear,
coupled differential equations, and those obtained by Berger's analysis are uncoupled,
quasi linear differential equations. Both the sets of exact and approximate equations of
motion are reduced to a Duffing type equation in the generalized form, whose solution is
obtained either by the use of the successive approximation method or by the use of elliptic
integrals [2, 8].

Numerical results are presented for both simply supported and clamped plates in
graphical form. It is shown that the effects of the temperature change and large amplitude
on the period of free vibrations are quite large and can not be ignored, even when the
temperature change is small. Further, it is established that Berger's approach yields results
sufficient for all practical purposes in engineering.

2. FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

Let us consider a flat circular plate heated at the upper face. Let us assume that the effects
of the internal friction, aerodynamic force and rotary inertia may be neglected.

Let V and T be the potential and kinetic energy of the plate due to bending, stretching
and vibration of the plate under the aerodynamic heating; then, due to symmetry of the
plate [1], we have,
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Case 1. Exact equations of motion
Using Hamilton's principle, for extremum ofthe integral ofequation (2.1), we get a set of

exact, coupled equations of motion as

where

o{I 0 1 1 (d)2(OW')2 00
o( "' o'('X)S = - 2' ro 8f -(Xa['

(2.4)

(2.5)

(2.6)

and X is the stress function.
The boundary conditions obtained by using the extremum condition of equation (2.1)

are as given in equation (2.7):
For the simply supported plate, we have

W' =0 }
02W ' vow' E d<x at , = 1.
0,2 +,~+D(1 v)r50 = 0

For the clamped plate, we have

(2.7a)

w' = 0I
ow'
-=0
iX

at' = 1. (2.7b)

Case 2. Berger's approximate equations of motion

By neglecting the second strain invariant e2 from equation (2.1) and using Hamilton's
principle, for extremum of the expression (2.1), we obtain the following set of approximate
equations of motion:

~_1_;:-(~)2V4 w' _ P V2w' +_(X_V20 = _ prf, a2
w'

12(1 v2
) ro Ed I-v E ot2

1 (Xt;) k2

el---=-
1- I-v Ed'

where k2 is constant throughout the plate.
The boundary conditions for this case are the same as given in equation (2.7).

(2.8)

(2.9)
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The problem is now to obtain the solution of equation of motion (2.4) or (2.8) subject to
the boundary conditions (2.7). Assuming the temperature to be symmetrical, the mean and
the moment of temperature distributions 0, e are given by

co

o = I 0 i (i(i = 0,2,4, ... even)
i=0.2

co

e = I epu = 0,2,4, ... even).
j=0.2

(2.10)

(2.11 )

In the present paper, the vibrations of plates has been analyzed after the change of
temperature, and so the temperature change during the vibration has not been considered.
For the vibration induced by the thermal shock, the deflection can not be assumed as
given in equation (2.13) and therefore, equation (2.4) or (2.8) has to be solved directly. Since
it seems to be natural to expect that there exists no remarkable difference between the wave
form ofthe present non-linear vibration and that ofthe small vibration [16J, the lowest mode
of vibration is assumed to be the same as the deflection form due to the temperature change
only; so, the normal displacement of the plate at any time, w'«(, E>, t), is assumed as the sum
of the displacement due to the temperature change F1(0, 0 and the amplitude of vibration
after the change in temperature F2 «(, t)e =const., as in the following equation:

(2.12a)

Assuming F1 and F2 in the following form

and

the expression for the normal displacement w' given by equation (2.12a) becomes

w'«(, E>, t) = z(E>, t)w;(O

where

z(E>, t) = zo(E»+[z(t)Je=consu

and

(2.12b)

(2.13)

(2.14)

in which the constants A 2 and A4 take the following values, and the subscript i stands for s
or c : for simply supported edge:

for clamped edge:

l+v
A4 =-­

5+v
(2.15)

(2.16)
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Solving successively the equations of motion (2.4) and (2.5) or (2.8) and (2.9) with the help of
equations (2.10)-(2.16) as in [1, 12J we obtain

and

where

f ' ff 3tZo+ 3Z0 = g

{
I (ro)2[ 5 {-fi:: = 16384 12 -(l+v)a d 72 0 0

00 0;} 00 (i+5)0; ]}
+(1 +v) i~2 i+2 +8(1-v) J2 U+2)(i+4)2(i+6)2

512
n:~ = 135(1 + v)(173 - 73v)

fi::= 16[1_{~(2ro)2a f .0;} x5V2+40V+I07]
L 12 d ;=0,2/+2 5+v

fl,a _ 16(v2+ 10v+ 33)(5v2+40v+ 107)
3,' - 9(1 +v)(5 +v)3L

ff:~=36864{1_~(X(1+V)(ro)2 f .0;}
23 3 d ;=0,21+2

f
La _ 20480
3,< --n

(2.17)

(2.18)

(2. 19a)

(2.19b)

(2.19c)

(2.19d)

(2.1ge)

(2.19f)

(2.l9g)

(2.19h)

(2.20a)

g~

(2.20b)

(2.2Oc)

(2.2Od)



306 M. C. PAL
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It is to be noted that to evaluate the constant e in equation (2.9), we integrate the equation
(2.9) throughout the plate under the condition that there are no in-plane displacements
along the edge of the circular plate.

Equations (2.17) and (2.18) represent the equation of dynamic equilibrium and the
equation of static equilibrium respectively. The equation of static equilibrium (2.18) was
studied in detail by Sunakawa [1] and Pal [12].

The solution of the equation of dynamic equilibrium (2.17) will be given in the present
paper.

3. ANALYTICAL SOLUTION

Using the transformation,
~ = J{f'1 + 3/3z~)r (3.1)

and thus, changing the independent variable r in the equation (2.17) to a new variable ~,

we have the following equation:

dZz
d~2 + Z+ Izz z + 13Z3 = 0 (3.2)

where
3/3Z0

Iz = 1'1 + 3/3Z~

13
13 = 1'1 + 3/3Z~

(3.3)
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For the pre-buckling state, that is when Zo ::;:: 0, the term consisting of Z2 in equation (3.2)
vanishes because f2 ::;:: 0, and the equation (3.2) becomes simple Duffing type equation
which can easily be solved by using elliptic integrals. For the post-buckling state, that is
for Zo i:- 0, equation (3.2) becomes the Duffing type equation in the generalized form and
can be solved by using elliptic integrals, but these solutions are too complicated and not
suitable for technical applications.

Therefore, for the post-buckling state, a method of successive approximation [2,8]
is used for solving the equation (3.2).

Changing the non-dimensional time ~ to j1. by the transformation, j1. = J(l + me,
equation (3.2) becomes

(3.4)

Let ZI and - Z2 be the maximum and minimum value respectively of the displacement z;
then the parameter /3 and the amplitude zare expanded into the power series of Z2 as

/3::;:: -/31Z2+/32Z~-/33Z~+/34Z1- .. · (3.5)

z = -J1t(j1.}Z2 +l12(j1.)Z~ -'13(J1.}Z~ + ... , (3.6)

where /3i and 11;, i ::;:: 1,2,3, ... are to be determined.
Substituting equations (3.5) and (3.6) in equation (3.4) and equating the coefficients

of Z2 and its higher powers, each to zero, we obtain a set of differential equations in
111,112,113, ... , with coefficients consisting of /31' /32' /33" ... Solving these equations by
the successive approximation method [2,8], with the initial conditions

and

'it (O) ::;:: 'h(O} ::;:: ,b(0) ::;:: ... = 0,

we can get the values of /31 , /32, /33 , ... and 111> 112,113, ... after eliminating the possibility
of resonance. Thus, finally the solution of equation (3.4) is obtained as

z::;:: tf2Z~+!nz~-(iif~-#fd3}z1+(1if1-*f~f3}Z~- ...]

+[ Z + lfz2 (29f2 If)Z3+(119f3 35ff)Z4 (65171f4 147512f- 2 ! 2 2- 144 2-n 3 2 4IT 2-~ 2 3 2- N'13O 2-~J2 3

+ 13hf3)Z~ + ...] COSJ1+[H2Z~ -V~z~ +(if~ -!fd3)Z~ -h~!7f~ -VU3)Z~+ ...]cos2J1

+[- (isf~.+ -bf3)Z~ + (isf~ + -bfd3}Zt - (mft - &:f~f3 - rlsf3)z~ + ...Jcos 3J1

+ [(;dd~ +-Jofd3}Zt -(Jhfi +-i2fU3)Z~+ ...] cos 4j1.

+[-(YOhof~+2j504nf3+~n)Z~+ ...Jcos 5j1.+... (3.7)

+ ....

The circular frequency w*(t) and the period of motion T*(t) are given as

w*(t} = JUt +3f 3Z
5)J(E-) J(1 + /3)

(2rO)2 pd
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and

(3.8)

which gives,

T* t - 2n(2ro)2 J(Pd) .2..- 2 1 2
( ) - J(/'1 + 3f~Z6) D [1 +bf2 - 8f3)Z2

- Usfi -±fd3)zi+(llif1- ffifU3 +&fDz1- .. .].

Equation (3.7) and (3.8) give, respectively, the circular frequency and the period of the
large amplitude free vibration of circular plates subjected to aero-dynamic heating. To get
the relation between the maximum and minimum values of amplitude z1 and - z2 we
integrate the equation (3.2) once and use the condition that

dz
d( = 0 at z = z 1 ,

(3.9)

where E is the total energy ofthe vibrating system. Equation (3.9) gives the relation between
the maximum and minimum values of amplitude z1 and - Z2'

For the pre-buckling state, equation (3.2) is reduced to

d2z
dr 2 +1'IZ+f~Z3 = O. (3.10)

where

Through the energy integral [2], equation (3.10) gives

1 r<P d¢
r = ±-J'-(/-:-~-+-f~z~)Jo J(l-Ki cos2 ¢)'

z ',J..
-~ = sin '/'.
Z2

The sign of the above integral is taken to be positive or negative according as z increases
or decreases with the increase of r.

Then the period of vibration is

4(2rof J(Pd)
T*(t) = J(1'1 +f~zD D K(Kd (3.11)

where K(K 1) is the complete elliptic integral of the first kind.

4. NUMERICAL EXAMPLES

(4.1)

(4.2a)

Let us assume that the circular plates, simply supported or clamped along the edge,
are subjected to the following change in temperature

0= e = [00 +0 1(l-(2)]}.

e = 0 that is g = 0

Taking v = t equations (2.19)--{2.22) with the help of equations (2.10), (2.11), (2.18), (3.3)
and (4.1) are reduced to

6144[ 1 (2ro)2 {931 0 0}]f 1 •e = __ 1--- iX0 1 -+17-
l.s 157 18 d 96 0 1
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(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.2f)

(4.2g)

(4.2h)

(4.3a)

(4.3b)

(4.3c)

(4.3d)

The critical temperature (0 1)cr. and the deflection at the centre of the plate after buck­
ling are obtained, with 0 0/01 as a parameter, for both exact and approximate cases from
equation (2.18) and compared as shown in Fig. 2 for different edge conditions, namely,
simply supported and clamped plates.

The behaviour of the plate for pre-buckling and post-buckling state is discussed below:

Case 1

(zo = 0)

The variation of the ratio of the non-linear and linear periods, T*/Twith the amplitude for
different temperatures is studied from equation (3.8) and the comparison between the
exact and the approximate analyses is shown in Fig. 3, for different boundary conditions.
The change of circular frequency with the amplitude is also compared and shown in
Figs. 4 and 5 using the temperature as a parameter. It is seen that the circular frequency
decreases with the increase of temperature for the pre-buckling state.
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FIG. I. Circular plate.
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FIG. 2. Relation between temperature rise and deflection at the centre of the plate.

Case 2

(zo '* 0)

For the post-buckling state, the change of circular frequency with the amplitude, taking
the temperature as a parameter, is obtained with the help ofequations (3.8), (2.18) and (4.1),
for both the exact and approximate analyses and shown in Figs. 4 and 5 for different edge
conditions.

The results show that the circular frequency increases with the increase of temperature
for the post-buckling state and decreases with the increase of temperature for the pre­
buckling state.
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FIG. 3. Influence of large amplitude on period of vibration.
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FIG. 4. Variation of frequencies of vibration of plate with temperature rIse and large amplitude,
simply supported edge, 0 0/01 = 1·0.
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FIG. 5. Variation of frequencies of vibration of plate with temperature rise and large amplitude,
clamped edge, 0 0/0 1 = 1·0.
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Figures 4 and 5show that the circular frequency increases with the increase ofamplitude
for the pre-buckling state and reaches a minimum at the buckling temperature, but decreases
with the increase ofamplitude for the post-buckling state until a snap through phenomenon
takes place, and it is seen that the effect of temperature on the vibration can not be ignored.

During the post buckling state, the plate attains a certain maximum absolute value of
amplitude, for a certain temperature. At this maximum absolute value of amplitude. the
plate suddenly starts deflecting in the opposite side, that is, the snap through phenomenon
takes place. This maximum absolute value of the amplitude corresponds to the point
where 01 > (01)cr., that is where a certain particular temperature after buckling, intersects
the abscissa. After the occurrence of such a phenomenon, the plate may start to vibrate
about the new position of equilibrium.

It is seen that the results obtained from Berger's approximate analysis agree closely
with those obtained from the exact analysis, which indicates the validity of Berger's
analysis for all practical purposes.

5. CONCLUSION

The non-linear natural vibration ofheated circular plates, simply supported or clamped,
has been studied by the use of an exact method as well as an approximate method. For the
exact method, the fundamental equations of motion are derived from the energy equation,
and since these equations are non-linear and coupled, the solutions are difficult to obtain.
But in the case of the approximate method, simplified quasilinear, decoupled equations
of motion for non-linear vibrations of plates subjected to heating are obtained by Berger's
analysis, and they can be easily solved by a successive approximation method, or by the
use of elliptic integrals as indicated in the present paper.

The results obtained by Berger's approximate analysis show that they are in good
agreement with those obtained by an exact analysis, which confirms the validity of Berger's
analysis for the thermal stress.

An analysis, such as presented here, will be of considerable importance in supersonic
airplanes, missiles and satellites, whenever the vibration has no small effect on the aero­
and thermo-elastic problems. It appears also a reasonable conclusion that the Berger's
approach presented in this paper is likely to yield results entirely adequate for many
technical purposes.
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A6cTpaKT-Orrpe,!IeJJllIOTCll, 113 ypaBHeHIlH :meprllll, OCHOBHhIe, HemmeHHhle, COrrpllJKeHHbIe ypaBeHllll
CBo6o,!IHbIX KOJJe6aHHH 60JJhlllOH aMIIJJHTY,!Ibl ,!IJJll HarpeThlX, KpyrJlhlX IIJJapprHHoK. YrrpollleHHble,
KBa3H-JJIlHeHHhIe, paCnpllJKeHHhIe ,!IH<jl<jlepeHI.\HaJlhHhIe ypaBHeHHll ,!IJlll TOrO-JKe CJJy'lall rrOJJY'IaIOTCll
TaKJKe MeTO,!IOM aHamna Iieprepa, TO eCTh, rrpeHe6perall BTOPhlM IlHBapHaHTOM ,!Ie<jlopMaI.\HH Cepe,!IHHHOH
rrOBepXHOCTH B BhIpaJKeH1f1f 3HeprllH.

PelllalOTcll, OT,!IeJlhHO, o6e CIfCTeMbl TO'lHhIX If nplf6JJlfJKeHHbIX ypaBHeHIfH nyTeM rrplfMeHeHHll MeTO,!Ia
rrOCJJe,!IOBaTeJJbHhIX npIf6JJIfJKeHIlH, a TaKJKe IfCnOJJh3Yll 3JJJJHrrTIl'leCKlfe IfHTerpaJJbI.

)J,alOTcll '1HCJIeHHhle pe3YJIhTaTbI B <jlopMe rpa<jlHKoB, TaK,!IJIll CBo6o,!IHO onepTbIX KaK If 3allleMJIeHHblX
KpyrJIhIX rrJIaCUIHOK.


